
Fredkin gates for finite-valued reversible and conservative logics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 9755

(http://iopscience.iop.org/0305-4470/35/46/304)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 02/06/2010 at 10:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/46
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 9755–9785 PII: S0305-4470(02)37993-9

Fredkin gates for finite-valued reversible and
conservative logics

G Cattaneo, A Leporati and R Leporini

Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di
Milano – Bicocca, via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

E-mail: cattang@disco.unimib.it, leporati@disco.unimib.it and leporini@disco.unimib.it

Received 10 June 2002, in final form 23 September 2002
Published 7 November 2002
Online at stacks.iop.org/JPhysA/35/9755

Abstract
The basic principles and results of conservative logic introduced by Fredkin
and Toffoli in 1982, on the basis of a seminal paper of Landauer, are
extended to d-valued logics, with a special attention to three-valued logics.
Different approaches to d-valued logics are examined in order to determine
some possible universal sets of logic primitives. In particular, we consider
the typical connectives of Łukasiewicz and Gödel logics, as well as Chang’s
MV-algebras. As a result, some possible three-valued and d-valued universal
gates are described which realize a functionally complete set of fundamental
connectives. Two no-go theorems are also proved.

PACS numbers: 03.67.Lx, 02.10.−v

1. Introduction

The present paper is based on two different research areas that have been developed in the
past years: conservative logic and many-valued logics. Conservative logic is a mathematical
model of computation introduced by Fredkin and Toffoli in [FT82] on the basis of the seminal
paper of Landauer [La61] (see also [Be73]) to improve the efficiency and performance of
computing processes in terms of dissipated energy. The model is based on the Fredkin gate,
a universal three-input/three-output Boolean gate which is both conservative and reversible.
As a matter of fact this gate was introduced by Petri some years before Fredkin in [Pe67],
and thus in the following we will call it the Petri–Fredkin gate. On the other hand, many-
valued logics and modal logics, which have known a great diffusion due to their ability to
manage incomplete and/or uncertain knowledge, are extensions of the classical Boolean logic.
Different approaches to many-valued and modal logics have been considered in literature; for
an overview see, for instance, [Re69, RT52]. These main subjects are briefly described in the
next sections.

0305-4470/02/469755+31$30.00 © 2002 IOP Publishing Ltd Printed in the UK 9755

http://stacks.iop.org/ja/35/9755

9756 G Cattaneo et al

k+1

1x
xk
x

xn

G1 GGk Gk+1

y

ky
y

y

1

k+1

m

m

Figure 1. Standard parallel architecture of an n-input/m-output gate.

In this paper we extend the basic principles and results of conservative logic to include the
main features of many-valued logics with a finite number of truth values. Different approaches
to many-valued logics are examined in order to determine some possible functionally complete
sets of logic connectives. In particular, we consider the typical connectives of Łukasiewicz
and Gödel logics, as well as Zawirski/Chang’s MV-algebras. As a result, we describe some
possible three-valued and finite-valued universal gates—that can be thought of as finite-valued
extensions of the Petri–Fredkin gate—which realize a functionally complete set of fundamental
connectives.

We also prove two no-go theorems: the first one states the impossibility of obtaining the
FAN-OUT gate from a strictly conservative d-valued gate if d is greater than the number n of
input/output lines. The second one says that it is impossible to realize a d-valued (d � 3)

three-input/three-output reversible and conservative extension of the Petri–Fredkin gate able
to realize simultaneously the Łukasiewicz connectives, the Gödel implication and the MV-
connectives. Owing to these results, some weakening conditions are investigated and some
d-valued universal gates that have the properties required by the conservative and many-valued
paradigms are presented.

2. Reversibility, conservativeness and conditional control of Boolean gates

Computational models are usually based upon Boolean logic, and use some universal set of
primitive connectives, such as {AND, NOT}.

From a general point of view, a (classical deterministic) n-input/m-output gate (where
n,m are positive integers) is a special-purpose computer schematized as a device able to
compute (Boolean) logical functions G : {0, 1}n → {0, 1}m. Any �x = (x1, x2, . . . , xn) ∈
{0, 1}n (resp., �y = (y1, y2, . . . , ym) ∈ {0, 1}m) is called an input (resp., output) vector. For
every i ∈ {1, 2, . . . , n} (resp., j ∈ {1, 2, . . . ,m}), called the input (resp., output) bit of position
i (resp., j), the Boolean value xi ∈ {0, 1} (resp., yj ∈ {0, 1}) is said to be the state of bit i
(resp., j) of vector �x (resp., �y). Finally, in the following we denote by λf the generic vector
belonging to the range of G.

The action of the multi-output map G on an input vector �x produces the output vector
G(�x) = (G1(�x),G2(�x), . . . ,Gm(�x)) determined by the component logical truth functions
(single-output maps) Gj : {0, 1}n→ {0, 1}, for any j = 1, 2, . . . ,m, with a possible parallel
implementation drawn in figure 1.

Conservative logic is a theoretical model of computation whose principal aim is to compute
with zero internal power dissipation. This goal is reached by basing the model upon reversible

Fredkin gates for finite-valued reversible and conservative logics 9757

Table 1. The Landauer three-input/three-output gate.

x1 x2 x3 → y1 y2 y3

0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 1 1 1

and conservative primitives, which reflect physical principles such as the reversibility of
microscopic dynamical laws and the conservation of certain physical quantities, such as the
energy of the physical system used to perform the computations.

Reversibility. Most of the time, computational models lack reversibility; that is, one cannot in
general deduce the input values of a gate from its output values. For example, knowing that the
output of an AND gate is the logical value 0, one cannot deduce the input values that generated
it. The original motivation for the study of reversibility in classical computing came from the
observation that heat dissipation is one of the major obstacles for miniaturization of classical
computers and the fact that the second law of thermodynamics implies that irreversible state
changes during computation must dissipate heat. ‘Thus, in the more abstract context of
computing, the laws of “conservation of information” may play a role analogous to those of
conservation of energy and momentum in physics.’ [Tof80]

Lack of reversibility means that during the computation some information is lost. As
shown by Landauer [La61] (see also [Be88] which can be found in [LR90]), a loss of
information implies a loss of energy and therefore any computational model based on
irreversible primitives is necessarily informationally dissipative. This is nowadays known
(see [Be98]) as Landauer’s principle

To erase a bit of classical information within a computer, 1 bit of entropy must be
expelled into the computer’s environment, typically in the form of waste heat. Thus
logical irreversibility is associated with physical irreversibility and requires a minimal
heat generation, per machine cycle, typically of the order of kT for each irreversible
operation.

In practice the heat dissipation per bit processed by (irreversible) computers in use today is
some orders of magnitude greater than the theoretical lower bound kT ln 2 given by Landauer’s
principle. However, if computer hardware continues to shrink in size as so far, then the only
feasible option to beat Landauer’s lower bound seems to be reversible computation1.

Let us make these considerations less informal by considering as a first example the
logical function L of table 1 computed by a three-input/three-output gate and discussed by
Landauer in [La61]. Following Landauer,

There are eight possible initial states, and in thermal equilibrium they will occur with
equal probability. How much entropy reduction will occur in a machine cycle? States

1 In modern computers heat dissipation is about kT × 108 per logical operation. The heat must be removed by
external means, for example, by constant cooling of all components by the thermal coupling of the circuits to a heat
reservoir, i.e., air.

9758 G Cattaneo et al

Table 2. Example of a two-input/four-output reversible gate.

x1 x2 �−→ y1 y2 y3 y4

0 0 0 0 0 0
0 1 0 1 1 0
1 0 0 1 1 1
1 1 1 0 0 1

(111) and (001) occur with a probability 1/8 each; states (110) and (000) have a
probability of occurrence of 3/8 each. The initial entropy was

Si(3) = −k
∑
�x

P (�x) loge P (�x) = −k
∑ 1

8
loge

1

8
= 3k loge 2.

The final entropy is

Sf (L) = −k
∑
λf

PL(λf) loge PL(λf)

= −k

(
1

8
loge

1

8
+

1

8
loge

1

8
+

3

8
loge

3

8
+

3

8
loge

3

8

)
.

The difference Si(3)−Sf (L) is 0.82k. The minimum dissipation, if the initial state has
no useful information, is therefore Ei(3) − Ef (L) = (Si(3) − Sf (L))T = 0.82kT .

More precisely, for any admissible output λf = (y1, y2, y3) ∈ Im(L) we can introduce
the set

ML(λf) := L−1(λf) = {(x1, x2, x3) ∈ {0, 1}3 : L(x1, x2, x3) = λf }
whose cardinality |ML(λf)| expresses the indistinguishability degree of the output λf , i.e.,
the total number of possible inputs which cannot be distinguished by L with respect to output
λf . Then the above probabilities can be expressed as

PL(λf) = |ML(λf)|
|{0, 1}3| =

1

8
|ML(λf)|.

We now want to extend these considerations in order to compare the dissipation of
informational energy in the case of devices whose number of output lines is not necessarily
equal to the number of input lines. To this end, let us denote byF({0, 1}, n,m) = ({0, 1}m){0,1}n

the collection of all n-input/m-output Boolean gates G : {0, 1}n → {0, 1}m (from now
on, with a little abuse of notation, we will refer interchangeably to gates and to the maps
computed by them), and by F({0, 1}, n, N) = ⋃

m∈N F({0, 1}, n,m) the collection of all
n-input/multi-output Boolean gates. For instance, F({0, 1}, 2, N) contains both the gate
AND : {0, 1}2 → {0, 1}, associating with the Boolean pair (x1, x2) the Boolean value
AND(x1, x2) = x1 · x2, and the two-input/four-output gate defined in table 2.

In F({0, 1}, n, N), owing to the assumption that in thermal equilibrium all possible input
vectors �x will occur with equal probability P(�x), the input information entropy is independent
of the particular gate and equal to

Si(n) : = −k
∑
�x

P (�x) loge P (�x)

= −k
∑
�x

1

2n
loge

1

2n
= nk loge 2.

Fredkin gates for finite-valued reversible and conservative logics 9759

What depends on the gate G ∈ F({0, 1}, n, N) is the set of λf -indistinguishable input vectors,
where λf ∈ Im(G) is any admissible output vector of G:

MG(λf) : = G−1(λf)

= {(x1, x2, . . . , xn) ∈ {0, 1}n : G(x1, x2, . . . , xn) = λf }.
Let us notice that the collection {MG(λf) : λf ∈ Im(G)} of all such subsets constitutes
a partition of {0, 1}n. Borrowing some terminology from axiomatic quantum mechanics,
elements λf from Im(G) can be called eigenvalues (possible output values) of G, Im(G) is
the spectrum of G, the set MG(λf) is the eigenspace (set of possible inputs) associated with the
eigenvalueλf , and the characteristic function χMG(λf) (=1 if �x ∈ MG(λf), and 0 otherwise) is
the spectral projection associated with the eigenspace. The collection of all spectral projections
of G, for λf ranging on the spectrum of G, is a spectral identity resolution of G:

Id =
∑

λf∈ Im(G)

χMG(λf) G =
∑

λf∈ Im(G)

λf χMG(λf).

The indistinguishability degree of the admissible output vector λf ∈ Im(G) is defined as
|MG(λf)|, and the probability of occurrence of λf as

PG(λf) = 1

2n
|MG(λf)|

with corresponding output information entropy

Sf (G) := −k
∑

λf∈ Im(G)

PG(λf) loge PG(λf) (1a)

= − k

2n

∑
λf∈ Im(G)

|MG(λf)| · loge |MG(λf)| + Si(n). (1b)

Hence, the information energy dissipation of G is

�E(G) = (Si(n)− Sf (G)) · T

= kT

2n

∑
λf ∈ Im(G)

|MG(λf)| · loge |MG(λf)|.

In particular, the information energy loss by the AND gate is �E(AND) = 3kT
4 loge 3 ≈

0.82kT whereas the gate of table 2 has no information energy dissipation, owing to its
reversibility.

From (1) it follows immediately that the output information entropy is bounded by

0 � Sf (G) � Si(n).

A generic gate G : {0, 1}n → {0, 1}m is reversible (one-to-one mapping) if and only if
n = m and every element λf of {0, 1}n is an admissible output; in this case the corresponding
|MG(λf)| is equal to 1 which leads to Si(n)− Sf (G) = 0, and thus also Ei(n)−Ef (G) = 0.
Precisely, the following proposition holds.

Proposition 2.1. Let G be an n-input Boolean gate. Then the information energy dissipation
is bounded by

0 � �E(G) � T Si(n) = nkT loge 2.

Moreover,

1. Im(G) is a singleton if and only if �E(G) = T Si(n);
2. the gate is reversible (one-to-one) if and only if �E(G) = 0.

9760 G Cattaneo et al

Table 3. Example of a two-input/two-output reversible gate, i.e., a permutation of the set {0, 1}2.

x1 x2 �−→ y1 y2

0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Table 4. Example of a two-input/two-output conservative gate, i.e., in each row the output vector
is a permutation of the input vector.

x1 x2 �−→ y1 y2

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Let us stress that in the case of an n-input/n-output gate realizing the logical function
G : {0, 1}n→ {0, 1}n the reversibility condition corresponds to the fact that G is a permutation
of the set {0, 1}n. For instance, a two-input/two-output reversible gate computes a permutation
of the set {00, 01, 10, 11}. Table 3 shows an example of a gate of this kind.

Conservativeness. After [FT82], this condition is usually modelled by the property that each
output (y1, y2, . . . , yn) of the gate is a permutation of the corresponding input (x1, x2, . . . , xn).
We call this condition strict conservativeness of the gate. Trivially a gate of this kind must
necessarily have the same number of input and output lines. Moreover, it is immediate to see
that the number of 1s in the output (y1, y2, . . . , yn) is the same as in the input (x1, x2, . . . , xn).
According to Toffoli [Tof80], in a conservative logic circuit the number of 1s in the input is
the same as the number of 1s in different parts of the circuit. This quantity is additive, and can
be shown to play a formal role analogous to that of energy in physical systems. In table 4 an
example of a (strictly) conservative two-input/two-output gate is presented.

We observe that some conservative (but not reversible) circuits using complementary
signal streams were discussed by von Neumann [vN56] as early as 1952. More recently,
Kinoshita and associates [Ki76] worked out a classification of logic elements that ‘conserve’
0s and 1s; their work, motivated by research in magnetic-bubble circuitry, mentions the
possibility of more energy-efficient computation, but has apparently little concern for
reversibility.

In general, in concrete devices the Boolean values 0 and 1 are realized by impulses of
energy ε0 and ε1 respectively, with 0 < ε0 < ε1 (see figure 2). Indeed, there should be a
sufficiently large energy barrier between them so that no spontaneous transition, which would
evidently be detrimental, can occur between the two states.

In the case of a generic (not necessarily conservative) gate which computes a logical
function G : {0, 1}n → {0, 1}n, a transition �x = (x1, x2, . . . , xn) �→ G(�x) = �y =
(y1, y2, . . . , yn) corresponding to a row of the tabular definition of the Boolean function
produces a variation of the internal energy whose amount is

�U(�x, �y) = (
εy1 + εy2 + · · · + εyn

)− (
εx1 + εx2 + · · · + εxn

)
.

Fredkin gates for finite-valued reversible and conservative logics 9761

0

1

0

εnoise

Figure 2. Realization of Boolean values 0 and 1 by impulses of energy ε0 and ε1, with
0 < εnoise < ε0 < ε1.

Table 5. The EXC two-input/two-output reversible and conservative gate.

x1 x2 �−→ y1 y2

0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

Therefore, the total internal energy dissipation of G is

�U(G) =
∑
�x∈{0,1}n

�U(�x,G(�x)).

Conservativeness of G trivially implies zero internal energy dissipation (�U(G) = 0).

Conclusions on reversibility and conservativeness. Up to now the loss of energy due to
irreversibility and non-conservativeness of logical primitives was irrelevant compared to the
amount of energy dissipated by an electronic device implementing logical gates. But the
problems rising from extreme miniaturization in electronics have led to the investigation of
new ways of implementing circuits, borrowing the knowledge of quantum mechanics. These
new research areas introduce the possibility of reversible and conservative computations
based on reversible and conservative physical behaviour, encouraging the definition of new
computational models.

Let us stress that conservativeness and reversibility are two independent notions: a gate
can satisfy both properties, only one of them, or none. For example, a conservative non-
reversible gate is given in table 4 (both inputs 01 and 10 are mapped into the same output 10)
and a reversible non-conservative gate is shown in table 3 (transition 00 �→ 11 is non-
conservative). Another famous example of a reversible and non-conservative Boolean gate is
the Toffoli gate, whose behaviour is defined by the following map CCNOT: {0, 1}3→ {0, 1}3:

y1 = x1 y2 = (x1 ∧ x3)⊕ x2 y3 = x3. (2)

Just as the Fredkin gate, the Toffoli gate was first presented by Petri in [Pe67], and thus it
should be called the Petri–Toffoli gate. The same gate (with outputs y2 and y3 exchanged) has
also been considered by Feynman in [Fe85], under the name of Controlled–Controlled-NOT
(CCNOT).

A simple example of a reversible and conservative two-inputs/two-outputs gate is
the realization of the exchange logical function EXC : {0, 1}2 → {0, 1}2 whose tabular
representation is given in table 5. In each row the output pair (y1, y2) is a permutation of the

9762 G Cattaneo et al

0 0

x2 x2 x2 x2

1 1

Id NOT

Figure 3. The conditional action of the Controlled-NOT gate.

Table 6. The Controlled-NOT reversible non-conservative gate.

x1 x2 �−→ y1 y2

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

corresponding input pair (x1, x2), whereas the map EXC is a (global) permutation of the set
{0, 1}2 = {00, 01, 10, 11}.
Conditional control gates. Let us consider the Boolean two-input/two-output reversible non-
conservative gate G(CN) : {0, 1}2→ {0, 1}2 whose component maps are the following:

G
(CN)

1 : {0, 1}2→ {0, 1} G
(CN)

1 (x1, x2) := x1

G
(CN)

2 : {0, 1}2→ {0, 1} G
(CN)

2 (x1, x2) := x1 ⊕ x2.

The corresponding truth table is given in table 6.
We can describe the behaviour of this gate by considering x1 as a control input which is

left unchanged but which determines the action of a prescribed operation on the target input
x2, transforming it into the output y2. To be precise, if the control input is 1 then the value
of the target line is negated (i.e., the gate NOT acts on x2 when x1 = 1), otherwise it is left
unchanged (i.e., the gate Id acts on x2 when x1 = 0). Formally, this is realized by a direct
connection of the first input line with the first output line, whereas the action on the input of
the second line is described by two maps δ(CN)

x1
: {0, 1} → {0, 1}, where δ(CN)

x1
= G

(CN)

2 (x1, ·)
for x1 ∈ {1, 0}. Precisely,

δ
(CN)
0 := G

(CN)
2 (0, ·) = Id and δ

(CN)
1 := G

(CN)
2 (1, ·) = NOT.

The input value of the control unit x1 selects the map δ(CN)
x1

(either the identity or the NOT
map) which acts on the input value x2 of the second line (figure 3). For this reason this gate
is called the Controlled-NOT (usually abbreviated as CNOT) gate.

From the general viewpoint, the conditional control method applies to the cases in which
the n-input/n-output gate under consideration can be divided into two parts: a control unit and
a target (also operating) unit (see figure 4). The control unit has in general k input and k output
lines, while the target unit has (n− k) input and (n − k) output lines. Thus any input vector
x1, . . . , xk, xk+1, . . . , xn can be split into two parts: the control configuration x1, . . . , xk and
the operating (sometimes also called target) input xk+1, . . . , xn. Any of the 2k possible control
configurations x1, . . . , xk is labelled by the integer number a = ∑k

t=1 xt2t−1. Moreover, 2k

functions δ0, δ1, . . . , δ2k−1 of the kind {0, 1}n−k → {0, 1}n−k are stored in the memory of the
control unit, the function δa being bijectively associated with the configuration labelled by the
integer number a ∈ {0, . . . , 2k − 1}.

When a configuration x1, . . . , xk (which in the following will be denoted indifferently
either by its vectorial notation �a or by its decimal representation a, depending on the particular
context) is fed as input to the control lines two things happen:

Fredkin gates for finite-valued reversible and conservative logics 9763

δa

x1

xk

Control Unit

2 −1
k

y
1 = x1

y
k = xk

y
k +1

yn

=

GateOperating Unit

x
k +1

xn(, ... ,)
x

k +1

xn

a δ0

δa

δ

δa

δa

Figure 4. Ideal realization of a generic conditional control gate: the gate is divided into a control
unit and an operating unit. The input values of the control unit are left unchanged and select a
prescribed function to be applied to the input values of the operating unit.

δG

a

G

a

δa

πQ δG δG
a

s
(s)

(a,s) = (s)
G

Figure 5. Finite automaton generated by a conditional control gate.

1. the control configuration x1, . . . , xk is returned unchanged on the output lines of the
control unit;

2. the function δa bijectively associated with the control configuration is selected and
applied to the input vector xk+1, . . . , xn of the operating unit, producing the output vector
δa(xk+1, . . . , xn).

We can look at a controlled gate as a finite automaton. The original space {0, 1}n on which
a controlled gate G acts can be split into the set A := {0, 1}k, called the alphabet of the
gate, and the set Q := {0, 1}n−k, called the phase space of the gate; elements of A are
symbols of the alphabet and elements of Q are states of the gate. Hence, the gate can
be represented as a mapping G : A × Q → A × Q, associating with any symbol–state
pair (�a, �s) a new symbol–state pair G(�a, �s) := (�a, δG

a (�s)). Therefore, if we put the gate
in cascade with the trivial decoder (according to [Tof80]) πQ : A × Q → Q associating
with any pair (a, s) the state πQ(a, s) := s one obtains a deterministic finite automaton
AG = 〈A,Q, δG〉 with (finite) alphabet A, set of states Q, and next state (also transition)
function δG := (πQ ◦ G) : A × Q → Q associating with any symbol–state pair (�a, �s) the
‘next’ state �s ′ = δG(�a, �s) := πQ(G(�a, �s)) = δG

a (�s) (see figure 5). We observe that this
automaton can be equivalently described by the pair

〈
Q,

{
δG

0 , δG
1 , . . . , δG

2k−1

}〉
consisting of

the phase space Q = {0, 1}n−k and the collection of 2k transformations of the phase space
δG
a : Q→ Q, for a running in {0, 1, . . . , 2k − 1}.

9764 G Cattaneo et al

a a

δ

Gδ

s δ (a,s)

Figure 6. Conditional control gate generated by a finite automaton.

s

a

Gr

a

aδ

G

+ s’ =s + (a)G

Figure 7. Reversible conditional control gate generated by a non-reversible gate G.

Vice versa, any (finite) automaton A = 〈A,Q, δ〉 consisting of the (finite) alphabet A, the
(finite) phase space Q, and the next state function δ : A×Q→ Q can be equivalently described
by the pair 〈Q, {δ0, δ1, . . . , δ|A|−1}〉 based on the phase space Q and the (finite) collection of
phase space transformations δa : Q → Q (for a ∈ {0, 1, . . . , |A| − 1}) associating with
any state �s the next state �s ′ = δa(�s) := δ(�a, �s). This automaton generates a controlled gate
Gδ : A×Q→ A×Q (see figure 6) associating with the symbol–state input pair (�a, �s) the
symbol–state output pair Gδ(�a, �s) := (�a, δ(�a, �s)). Trivially, if |A| = 2k and |Q| = 2h then
by a suitable binary representation of each symbol �a and each state �s this conditional control
gate is realized by a mapping Gδ : {0, 1}n→ {0, 1}n, with n = h + k.

In conclusion, the class of Boolean conditional control gates is categorically equivalent
to the class of deterministic finite automata in which both the alphabet and the phase space
have a power of 2 cardinality.

From a generic gate to a (conservative) reversible conditional control gate, and back. If a
Boolean gate G : {0, 1}n → {0, 1}m is not reversible, then it is always possible to construct
a corresponding reversible gate Gr : {0, 1}m+n → {0, 1}m+n associating with the input pair
(�a, �s) ∈ {0, 1}n× {0, 1}m the output pair (�a, �s ⊕G(�a)) ∈ {0, 1}n × {0, 1}m. Moreover, this is
a controlled gate, that is a finite automaton with respect to the alphabet A = {0, 1}n, the phase
space Q = {0, 1}m, and the set of next state functions δ �a (for �a ∈ {0, 1}n) associating with any
state �s ∈ {0, 1}m the next state �s ′ = δ �a(�s) := �s ⊕G(�a) ∈ {0, 1}m (see figure 7).

Generally, Gr is a non-conservative gate. If this is the case, we can extend it to a
conservative gate Grc by adding some new input and output lines, maintaining the original
reversibility. Let {�x}1 =

∑n+m
i=1 xi be the number of ones contained in the input �x; analogously,

Fredkin gates for finite-valued reversible and conservative logics 9765

let {Gr(�x)}1 =
∑n+m

i=1 Gr
i (�x) be the number of ones contained in the corresponding output

Gr(�x). We denote by E(�x) the quantity {Gr(�x)}1 − {�x}1. Clearly E(�x) is an integer number
from the interval [−(n + m), n + m]. It is immediately seen that if Gr were conservative then
it would hold E(�x) = 0 for every �x ∈ {0, 1}n+m. On the other hand, since we have assumed
that Gr is a non-conservative gate, there exists an �x ∈ {0, 1}n+m such that E(�x) �= 0.

For the moment, let us suppose that E(�x) > 0. Then there exists an �x′ ∈ {0, 1}n+m such
that E(�x′) < 0. In fact we can express the quantity

∑
�x∈{0,1}n+m E(�x) as follows:

∑
�x∈{0,1}n+m

E(�x) =
∑

�x∈{0,1}n+m

({Gr(�x)}1 − {�x}1)

=
∑

�x∈{0,1}n+m

{Gr(�x)}1 −
∑

�x∈{0,1}n+m

{x}1. (3)

Since Gr is reversible, it is a permutation over the set {0, 1}n+m. This means that the two sums
in (3) are calculated over the same elements, and thus

∑
�x∈{0,1}n+m

E(�x) = 0.

As a consequence, if E(�x) > 0 there must exist an �x ′ ∈ {0, 1}n+m such that E(�x′) < 0. In a
completely analogous way we can show that if E(�x) < 0 then there exists an �x′ ∈ {0, 1}n+m

such that E(�x′) > 0.
For the considerations above, if we define � = −min�x E(�x) and h = max�x E(�x), and

the gate Gr is non-conservative, then � and h are positive integers. For any �x ∈ {0, 1}n+m

such that E(�x) < 0, let E�(�x) be the string 1, . . . , 1︸ ︷︷ ︸
−E(�x)

, 0, . . . , 0 of length � (if � = 0 then

E�(�x) is the empty string); analogously, whenever E(�x) > 0 we define Ec
h(�x) as the string

0, . . . , 0︸ ︷︷ ︸
E(�x)

, 1, . . . , 1 of length h (and also in this case, if h = 0 then Ec
h(�x) is the empty string).

To extend Gr to a reversible and conservative gate Grc we can use � ancillae lines (that
we briefly indicate with �y) to provide −E(�x) ones whenever E(�x) < 0, and h ancillae lines
(that we indicate with �z) to remove E(�x) ones whenever E(�x) > 0. More precisely, we define
Grc : {0, 1}n+m+�+h→ {0, 1}n+m+�+h as follows:

∀�x ∈ {0, 1}n+m,∀�y ∈ {0, 1}�,∀�z ∈ {0, 1}h

Grc(�x, �y, �z) :=




(Gr(�x),E�(�x), �1h) if E(�x) < 0, �y = �0 and �z = �1 (i)

(�k, �0�, �1h) if Gr(�k) = �x,E(�k) < 0,

�y = E�(�k) and �z = �1 (ii)

(Gr(�x), �0�, �1h) if E(�x) = 0, �y = �0 and �z = �1 (iii)(
Gr(�x), �0�, E

c
h(�x)

)
if E(�x) > 0, �y = �0 and �z = �1 (iv)

(�k, �0�, �1h) if Gr(�k) = �x,E(�k) > 0,

�y = �0 and �z = Ec
h(
�k) (v)

(�x, �y, �z) otherwise. (vi)

A direct inspection of Grc shows that the map Gr is obtained in the first n+m output lines
when the ancillae lines �y and �z are fixed, respectively, with the input values �0 and �1. Notice

9766 G Cattaneo et al

µ

0

Gr πQ

a

+0 (a)G
(a)G

G

a a

Figure 8. The original gate obtained from its (conservative and) reversible extension.

that rules (ii) and (v) are designed in order to provide the inverses of the tuples produced by
rules (i) and (iv), respectively. On the other hand, the tuples produced by rule (iii) can be
inverted by computing the inverse of the first n+m components through the inverse of the map
Gr . Finally, rule (vi) makes the gate behave as the identity when none of the previous rules are
satisfied: as a consequence, the corresponding tuples can be trivially inverted. Summarizing,
the inverse of Grc is obtained by substituting rule (iii) in the analytic expression of Grc with
the following:

(�k, �0�, �1h) if Gr(�k) = �x,E(�k) = 0, �y = �0 and �z = �1.

Following Toffoli [Tof80], the original arbitrary Boolean gate G can be recovered by
means of the just constructed reversible and conservative gate Grc in the following way:

In more general mathematical parlance, a realization of a function G consists in a new
function Grc together with two mappings µ and πQ (respectively, the encoder and the
decoder) such that G = πQ◦Grc◦µ. In this context, our plan is to obtain a realization
πQ◦Grc◦µ of G such that Grc is invertible [i.e., reversible] and conservative, and the
mappings µ and πQ are essentially independent of G and contain as little ‘computing
power’ as possible.
More precisely, though the form of µ and πQ must obviously reflect the number of
input and output components of G, and thus the format of G’s truth table, we want
them to be otherwise independent of the particular contents of such truth table as G
is made to range over the set of all combinatorial functions.

In the present case, the encoder is realized by the mapping µ : {0, 1}n → {0, 1}n+m+�+h

associating with the input �a ∈ {0, 1}n the output 4-tuple µ(�a) := (�a, �0m, �0�, �1h) ∈ {0, 1}n ×
{0, 1}m × {0, 1}� × {0, 1}h (independent of the particular form of G). The decoder is realized
by the projection mapping πQ : A×Q×{0, 1}�×{0, 1}h→ Q. Trivially, for any �a ∈ {0, 1}n
one gets (πQ ◦Grc ◦ µ)(�a) = (πQ ◦Grc)(�a, �0m, �0�, �1h) = πQ(�a,G(�a), �y, �z) = G(�a). This
process is depicted in figure 8.

The FAN-OUT gate as a cloning procedure induced by the Controlled-NOT gate. A very
important connective in reversible computing is FAN-OUT: L → L2, defined by the law
FAN-OUT(x) = (x, x). In other words, the FAN-OUT function simply clones the input
value. When dealing with classical circuits, the FAN-OUT function is implemented by
sticking two output wires to an existing input wire. The Controlled-NOT gate (see table 6)
provides a possible realization of the FAN-OUT function by a two-input/two-output reversible
gate. Indeed, if the operating line is fixed with the input value x2 = 0, then the control input
is cloned realizing in this way a classical FAN-OUT (see figure 9).

Fredkin gates for finite-valued reversible and conservative logics 9767

0 0 1 1

0 0

Id NOT0 1

Figure 9. Realization of the FAN-OUT function with the Controlled-NOT gate.

Table 7. The Petri–Fredkin reversible and conservative gate.

x1 x2 x3 �−→ y1 y2 y3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

3. The conservative and reversible Petri–Fredkin gate

(F1) One of the paradigmatic conservative and reversible primitives is the Petri–Fredkin gate,
a three-input/three-output gate that computes the following function FG : {0, 1}3 → {0, 1}3:

y1 = x1 y2 = (x1 ∧ x2) ∨ (¬x1 ∧ x3) y3 = (¬x1 ∧ x2) ∨ (x1 ∧ x3).

Its truth table is presented in table 7.
(F2) The Petri–Fredkin gate is self-reversible, i.e., FG ◦ FG = Id. Hence, the inverse of

function FG is FG itself. This is a particularly desirable feature for the construction of the
quantum version of a reversible circuit ([FT82], p 247), since the part of the circuit which
‘undoes’ the computation (in order to disentangle input/output lines and the so-called ancillae
lines) is thus completely symmetrical to the part which computes the output value.

Note that self-reversibility implies the reversibility property. The converse is not generally
true: if f : Lm → Lm is reversible then it is a permutation over Lm and, as is well known, in
general the composition of a permutation with itself does not give the identity as a result. In
particular, it can immediately be seen that only those permutations which are expressible as
the composition of disjoint cycles of length 2 (and fixed points) are self-reversible.

(F3) Looking at table 7, we can immediately see that the Petri–Fredkin gate is conservative.
This property allows for the realization of the Petri–Fredkin gate in the framework of ‘billiard
ball’ computing, and led to the following observation concerning the physical meaning of
conservativeness:

In conservative logic, all signal processing is ultimately reduced to conditional routing
of signals. Roughly speaking, signals are treated as unalterable objects that can be
moved around in the course of a computation but never created or destroyed. ([FT82],
p 227)

The billiard ball model, also developed by Fredkin and Toffoli in [FT82], is an excellent
example of a toy scientific model of no immediate practical application but of large scientific
impact. Balls of radius 1 travel on a unit grid in two directions. The direction of their

9768 G Cattaneo et al

0 0 1 1

a
EXC

b

b

a
Id

a

b

a

b

Figure 10. The Petri–Fredkin gate as a conditional switch.

movements can be changed either by an elastic collision, or by a reflection at a ‘mirror’. Using
this model it is possible to implement a switch gate; the Petri–Toffoli gate, whose behaviour
is described in equation (2), can then be implemented with four of them.

(F4) If the first of the inputs is set to 0 then the Petri–Fredkin gate exchanges the second
input with the third one, whereas if the first input is set to 1 it returns all the inputs unchanged,
as shown in figure 10.

Therefore, the Petri–Fredkin gate is a conditional control gate with x1 as control input,
δ0 = EXC and δ1 = Id.

(F5) From the Petri–Fredkin gate we can obtain some classical unitary and binary
connectives by setting respectively two and one of the input lines to a constant value (that is,
either 0 or 1). For example,

• by fixing x3 = 0 in the input, the second output becomes y2 = (x1 ∧ x2) ∨ (¬x1 ∧ 0) =
x1 ∧ x2, i.e., y2 gives the logical AND between x1 and x2. In this case the outputs y1 and
y3 are called garbage;
• by fixing x2 = 1 and x3 = 0 the input x1 is negated in the output y3 = ¬x1, with garbage

y1 and y2. In this way we realize the NOT connective.

(F6) Differently from the realization of the FAN-OUT gate by the reversible non-
conservative Controlled-NOT gate, it is not difficult to see that it is impossible to realize
the FAN-OUT function by a conservative two-input/two-output gate. Such a realization
requires at least three input lines and three output lines, even when working with Boolean
logic. The Petri–Fredkin gate supplies one of these possible realizations:

• if we fix x2 = 1 and x3 = 0 then the first input is cloned in the first and second outputs,
i.e., we obtain the FAN-OUT function, with the output y3 as garbage.

Summarizing, the Petri–Fredkin gate has the following properties:

(F1) it is a three-input/three-output gate, where each input/output assumes values in {0, 1};
(F2) it is reversible, that is, a bijective mapping from {0, 1}3 onto {0, 1}3;
(F2′) it is self-reversible, that is, FG2 = FG ◦ FG = Id (the identity function on {0, 1}3);
(F3) it is conservative, in the sense that the number of 0’s and 1’s in the input is the same as

in the output;
(F4) it is a controlled gate, that is, x1 is a control input which is left unchanged but which

determines a transformation of the target input (x2, x3) into the output (y2, y3) by the
gate EXC if x1 = 0 and by the identity gate if x1 = 1;

(F5) it is a universal primitive, that is, from the configurations of the gate we can obtain the
classical logical connectives AND, NOT (as well as logical disjunction and implication)
which constitute a ‘functionally complete’ set of connectives for Boolean logic, that is
a set of primitive truth functions with which all the possible truth functions (i.e., all
functions {0, 1}n→ {0, 1} for n ranging in N) can be realized;

(F6) it realizes the FAN-OUT connective, which plays a central role in reversible
computations since it clones a given input signal.

Fredkin gates for finite-valued reversible and conservative logics 9769

Our aim is to extend this computational Boolean framework based on the Petri–Fredkin
gate to include the main features of many-valued logics, when a finite number of truth values
are involved. In the next section we give a brief summary of the main aspects of this subject.

4. Many-valued logics

The simplest extension of classical two-valued logic consists in the introduction of a third
‘intermediate’, or ‘neutral’ or ‘indeterminate’ value. Łukasiewicz developed this idea in
[Łu20]. In this paper he introduced a third truth value to take into account propositions which
are neither true nor false, defining in this way a three-valued logic. This logic was then
extended to deal with d truth values as well as with an infinite number of truth values, in
particular the ℵ0 and ℵ1 cardinalities.

Let us begin with a brief exposition of the main features of the many-valued logics of
Łukasiewicz; the definition and the properties of the operators are the same for the finite- and
the infinite-valued cases, unless otherwise stated.

Technically speaking, truth values of a logical system are defined just as syntactic labels,
with no numerical meaning. In a subsequent step, it is possible to give an interpretation of
the logical system in terms of an algebraic structure; only during such a process, the truth
values are associated with elements of the structure, which can be more abstract mathematical
objects than real or integer numbers. Indeed, all the notions here exposed can be restated in
such a formal way; however, for our purposes it will be convenient to deal with the following
sets of truth values, treated as numerical sets equipped with the standard total order relation
induced by R:

• Ld =
{
0, 1

d−1 , 2
d−1 , . . . , d−2

d−1 , 1
}
, with d � 2, for d-valued logics;

• Lℵ0 = [0, 1]∩Q, that is the set of rational values in the interval [0, 1], for infinite-valued
logics with ℵ0 truth values;
• Lℵ1 = [0, 1], that is the set of real values in the interval [0, 1], for infinite-valued logics

with ℵ1 truth values.

The numbers of Lα, α ∈ {d,ℵ0,ℵ1} are interpreted, after Łukasiewicz, as the possible truth
values which logical sentences can be assigned to. As usually done in the literature, the
values 1 and 0 denote respectively truth and falseness, whereas all the other values are used
to indicate different degrees of indefiniteness. With the introduction of the new truth values,
the propositional connectives of Boolean logic must be redefined. Accordingly, many-valued
logics represent strong generalizations of bivalent (i.e., classical) logic.

4.1. Łukasiewicz approach

The Łukasiewicz system on the totally ordered numerical set of truth values Lα , with
α ∈ {d,ℵ0,ℵ1}, considers as primitive the implication (→L) connective, which is defined by
the following equation:

x →L y := min{1, 1− x + y} (Łukasiewicz implication)

=
{

1− x + y if y < x

1 otherwise.

In the system 〈Lα,→L〉 a negation (¬) connective is derived according to the rule:

¬x : = x →L 0 (diametrical negation)

= 1− x.

9770 G Cattaneo et al

Using these two connectives, Łukasiewicz defines some other derived ones as

x ∨ y := (x →L y)→L y (Łukasiewicz disjunction)
x ∧ y := ¬(¬x ∨ ¬y) (Łukasiewicz conjunction)
x ↔L y := (x →L y) ∧ (y →L x) (Łukasiewicz equivalence)

the former two being the algebraic realizations of the logical connectives OR and AND
respectively.

From these definitions it is easy to see that the following equalities hold:

x ∨ y = max{x, y} and x ∧ y = min{x, y}
where max and min are the lub and glb of the pair of numbers x, y with respect to the standard
total order of Lα , which can also be expressed in the form

x � y ⇐⇒ x →L y = 1.

One important feature of all many-valued connectives now presented is that they are equal
to the analogous Boolean connectives when only 0 or 1 are involved.

Following Chang [Ch58, Ch59], the Łukasiewicz approach to many-valued logics can be
equivalently recovered on the basis of the pair of connectives {⊕,¬}, where ⊕ is the binary
operation of truncated sum—introduced for the first time by Zawirski in [Za34]—defined as
follows:

x ⊕ y : = min{1, x + y} (truncated sum)

=
{
x + y if x + y < 1
1 otherwise.

The Łukasiewicz system 〈Lα,→L〉 and the Zawirski one 〈Lα,⊕,¬〉 are mutually
equivalent, owing to the ‘translation’ rules:

x ⊕ y = ¬x →L y and x →L y = ¬x ⊕ y. (4)

Furthermore, the following binary operation can be defined in the Zawirski 〈Lα,⊕,¬〉-system:

x � y : = ¬(¬x ⊕¬y) = max{0, x + y − 1}
=

{
x + y − 1 if 1 < x + y

0 otherwise.

In some semantic interpretations, ⊕ and � are considered as algebraic realizations of the
logical connectives VEL and ET respectively, and they are also called the MV-disjunction and
the MV-conjunction.

Let us stress that on the basis of either the Łukasiewicz system or the Zawirski one it is
always possible to derive a structure 〈Lα,∧,∨,¬〉 of distributive lattice with a non-standard
negation. The lattice join and meet operations, algebraic realizations of the logical connectives
OR and AND, can be defined in the two systems respectively as follows:

x ∨ y = max{x, y} = (x �¬y)⊕ y = ¬(¬x ⊕ y)⊕ y (5a)
x ∧ y = min{x, y} = (x ⊕¬y)� y = ¬[¬(x ⊕¬y)⊕¬y]. (5b)

Note that the excluded middle law holds in the case of the VEL connective (∀x ∈ Lα:
x⊕¬x = 1), whereas in general this law does not hold for the OR connective (∀x ∈ Lα\{0, 1}:
x ∨¬x �= 1). A similar result is verified with respect to the non-contradiction law (∀x ∈ Lα:
x �¬x = 0 and ∀x ∈ Lα\{0, 1}: x ∧¬x �= 0). However, the desirable law x ∨ x →L x = 1
holds relatively to the OR connective, but for every x �= 0, 1 one has that x ⊕ x →L x �= 1.
In the Zawirski context, the standard ordering on Lα now assumes the form

x � y ⇐⇒ ¬x ⊕ y = 1.

Fredkin gates for finite-valued reversible and conservative logics 9771

Two modal connectives, possibility (♦) and necessity (�), can be introduced on Lα

according to the following definitions:

♦x =
{

0 if x = 0
1 if x �= 0

(possibility)

� x =
{

0 if x �= 1
1 if x = 1.

(necessity)

Note that the restriction of both connectives to the Boolean values coincides with the
identity function (these modalities are meaningless in the Boolean environment).

Besides the diametrical negation (¬) two other negation connectives can be defined as
many-valued extensions of the standard Boolean negation: the intuitionistic negation (also
impossibility ∼) and the anti-intuitionistic negation (also contingency) defined as

∼ x : = ¬♦x (impossibility)

=
{

1 if x = 0
0 if x �= 0

(intuitionistic negation)

and
	x : = ¬� x (contingency)

=
{

1 if x �= 1
0 if x = 1.

(anti-intuitionistic negation)

In agreement with the intuitionistic propositional logic of Brouwer and Heyting, the
intuitionistic negation (impossibility) fails the excluded middle law (∀x ∈ Lα\{0, 1}:
x∨ ∼ x = x⊕ ∼ x = x �= 1), but does not fail the non-contradiction law (∀x ∈ Lα:
x∧ ∼ x = x� ∼ x = 0). Note that the restriction of the three negations to the Boolean values
collapses in a unique (standard) negation (∀x ∈ {0, 1} : ¬x = ∼x = 	x = 1− x).

The intuitionistic negation is a primitive one, together with the diametrical negation, in
BZ-lattice structures, of which the system 〈Lα,∧,∨,¬,∼〉 is a standard model. For further
information on BZ structures see [CN89].

In conclusion, in the algebraic approach to many-valued logics we have considered
as primitives two mutually interdefinable (according to (4)) systems, the Łukasiewicz one
〈Lα,→L〉 and the Zawirski one 〈Lα,⊕,¬〉. A new system of distributive lattice with
diametrical negation 〈Lα,∧,∨,¬〉 can always be induced. Moreover, the set of unitary
connectives {�,♦,∼, 	} (two modalities and two negations) are mutually interdefinable
making use of the diametrical negation (¬) according to the following diagram:

¬(·)
♦←−¬(·)¬——−→�
↑ ↑| |↓ ↓
∼←−——¬(·)¬−→ 	

¬(·)

Let us briefly see what happens in the finite-valued case. In the three-valued logic L3 one
has

♦x = ¬x →L x = x ⊕ x

� x = ¬(x →L ¬x) = ¬(¬x ⊕¬x) = x � x.

Let us stress that in this case, L3, the above definition of ‘it is possible that x’ coincides with
‘if not x then x’ (♦x = ¬x →L x); in [Łu30] Łukasiewicz mentioned that Tarski, a student
of his, in 1921 proposed this as the definition of possibility. Therefore in this particular case
we can derive the modal connectives from the system 〈L3,→L〉 (equivalently, 〈L3,⊕,¬〉)

9772 G Cattaneo et al

which is thus sufficient to generate all connectives introduced above. In particular, the two
negations impossibility and contingency have the form ∼x = ¬(¬x →L x) = ¬(x ⊕ x) and
	x = x →L ¬x = ¬x ⊕¬x, respectively.

The link between possibility and truncated sum connectives is extended to the more
general finite d-valued case by the following identity, which is true for every x ∈ Ld :

♦x := x ⊕ x ⊕ · · · ⊕ x︸ ︷︷ ︸
(d−1)-times

.

Thus owing to this result and the relation

� x = ¬♦¬x = x � x � · · · � x︸ ︷︷ ︸
(d−1)-times

also in any finite-valued case the modal connectives of possibility and necessity can both be
derived inside the system 〈Ld,⊕,¬〉.

We observe that, for infinite-valued logics, it is not possible to derive from→L and ¬ the
modal operators � and♦, and the intuitionistic and anti-intuitionistic negations∼ and 	 as we
have just done for the finite-valued case. In fact, in [Mc51] the following theorem has been
proved:

Theorem 4.1. Let L ∈ {Lℵ0 , Lℵ1 }. A function f : Lm → L is expressible as a formula
containing only the operators→L and ¬ if and only if it is continuous.

4.2. Gödel approach

The extension of classical connectives to many-valued logics is not unique. For example,
different types of implications have been defined in literature; one of these, which is often
used, is the implication→G defined by Gödel:

x →G y :=
{
y if y < x

1 otherwise.
(Gödel implication)

Note that if the use of the constant value 0 is allowed then we can obtain the intuitionistic
negation as ∼x = x →G 0. Moreover, in the three-valued case Gödel’s implication differs
from→L only for the input pair

(
1
2 , 0

)
: in fact, 1

2 →L 0 = 1
2 whereas 1

2 →G 0 = 0.

5. Functional completeness of finite-valued calculus

We face now the problem of determining whether any conceivable function f : Ln
d → Ld ,

for n ranging in N, is expressible using only the operators ¬ and →L, i.e., the functional
completeness problem on Ld of the pair of connectives {¬,→L}.

The following result, originally due to Jerzy Słupecki (see, for example, [RT52]), gives a
negative answer.

Theorem 5.1. The d-valued (with d � 3) propositional calculus of Łukasiewicz based on
operators¬ and→L is not functionally complete. That is, there exist functions f : Ln

d → Ld

which are not expressible as a composition of the logical functions¬ and→L (from which we
stress that it is possible to derive the logical functions ∨,∧,⊕,�,♦,�, 	,∼,↔L).

Proof. The result follows directly from the fact that every function built-up using only ¬
and→L gives a result in {0, 1} when its arguments are assigned with values in this set. As
a consequence we cannot represent, for example, the constant function which is identically
equal to 1

d−1 . �

Fredkin gates for finite-valued reversible and conservative logics 9773

To make the d-valued sentential calculus functionally complete Słupecki introduced a
new unary connective, called tertium, which is defined by the constant function T : Ld → Ld :

∀x ∈ Ld T (x) := 1

d − 1
.

In fact, the following theorem holds (the interested reader can find the proof of this
theorem in [RT52]).

Theorem 5.2. The d-valued (with d � 2) propositional calculus of Łukasiewicz is functionally
complete with respect to the set of primitive truth functions {¬,→L, T }.

On the other hand, also 〈Ld,→L〉 is functionally complete (recall that ¬x = x →L 0)
according to the following definition:

Definition 5.1. A collection of primitive truth functions and a set of constants from Ld

are universal or (according to [RT52]) functionally complete if all possible truth functions
Ln

d → Ld , with n ∈ N, are expressible using these primitive functions and assigned constants.

Hence it is functionally equivalent to assume the tertium function or the inclusion of
constants in the original set of primitives {¬,→L}.

6. Finite-valued conservative logics

In this section we extend conservative logic to include the main features of d-valued logics,
with particular attention to three-valued logics. Since conservative logic is based on the Petri–
Fredkin gate, we will extend it in order to deal with d possible truth values on its input and
output lines.

First of all we restrict our attention to gates having the same number of input and output
lines. For brevity, we call the (n, d)-gate an n-input/n-output gate whose input and output
lines may assume values from Ld . Thus, an (n, d)-gate computes a function f : Ln

d → Ln
d ,

where Ln
d = Ld × · · · × Ld︸ ︷︷ ︸

n times

.

Reversibility. The extension of the reversibility property is simple: an (n, d)-gate is reversible
if and only if the function computed by the gate is one-to-one (or, in other words, a permutation
of the set Ln

d). A similar argument holds for self-reversibility: an (n, d)-gate is self-reversible
if and only if the corresponding function applied twice is the identity function.

Conservativeness. The case of conservativeness is more complicated. A gate is strictly
conservative if and only if each output vector is obtained by a permutation of the components
of the input vector. This definition reflects perfectly the observation made by Fredkin and
Toffoli in [FT82], cited above. As in the Boolean case, strict conservativeness and reversibility
are two independent notions.

Notice that the permutation of the input values is not fixed, but varies depending on the
pattern of values presented to the input lines; an example can be seen in figure 10, where
two possible permutations are chosen according to the value fed to the first input of the
Petri–Fredkin gate.

Clearly the two-valued Petri–Fredkin gate is strictly conservative, and in our first attempt
to make an extension of this gate to the finite-valued case we tried to preserve this property.
Unfortunately, if the number n of input/output lines of a strictly conservative gate for a
d-valued logic is not greater than d, then it is impossible to realize in its configurations the
FAN-OUT function, as stated in the following proposition:

9774 G Cattaneo et al

Proposition 6.1. If n and d are two integer numbers such that 0 < n � d then there is
no function f : Ln

d → Ln
d which corresponds to a strictly conservative gate realizing in its

configurations the FAN-OUT function.

Proof. If n = 1 then the gate has one output, and thus it cannot realize the FAN-OUT function.
So, assume that 1 < n � d , and that there exists a strictly conservative gate realizing FAN-
OUT and corresponding to a function f : Ln

d → Ln
d . In the gate configuration realizing the

FAN-OUT function, one input line is fed with a variable value and n − 1 input lines are fed
with constant values. Since n− 1 � d − 1, there exists at least one truth value � ∈ Ld which
does not appear in the fixed constant input values. When the variable value of the input is set
to �, both the following properties should hold:

• the output vector should be a permutation of the input vector (since the gate is strictly
conservative), and
• � should appear twice in the output values (as the gate realizes the FAN-OUT function),

which is clearly impossible. �

If the condition n � d in proposition 6.1 is relaxed, then it is not difficult to see that
FAN-OUT can be realized through gates which are both reversible and strictly conservative:
see, for example, the Petri–Fredkin gate, where n = 3 and d = 2.

Weak conservativeness. An alternative approach is to weaken the conservativeness property in
order to obtain some reasonable gate that computes the FAN-OUT function. Thus we say that
a gate is weakly conservative if and only if the sum of output values is always equal to the sum
of input values. Clearly if a gate is strictly conservative then it is also weakly conservative,
while the converse is not generally true. Moreover, it can immediately be seen that strict and
weak conservativeness coincide in the Boolean case.

For example, if the input of a gate is (λ, 0, 1) and the corresponding output is (0, 1, λ)

then the gate is both strictly conservative and weakly conservative for this input/output
pair, regardless of the numerical value associated with λ ∈ Ld . On the other hand, if the
corresponding output is (λ, λ, λ) then the gate is weakly conservative if and only if we
associate with λ the numerical value 1

2 , while it is not strictly conservative, whatever the
numerical value associated with λ. Indeed it is easy to see that, for a given input vector,
the set of admissible output vectors prescribed by the weak conservativeness property varies
depending upon the numerical values associated with the truth values.

Assuming Ld as the set of truth values, we propose a possible physical interpretation of
the weak conservativeness property. To produce a given input vector for a gate we need some
amount of energy. A ‘conservative’ gate has to build the output vector in such a way that this
energy is preserved; in other words, the output produced must have the property that, if built
from scratch, it requires the same amount of energy as was required to build the input. The
simplest way to satisfy this property is to produce a permutation of the input values, as strictly
conservative gates do.

Now, let us suppose encoding the d truth values on a physical system which has energy
levels that are equally spaced and ordered according to the numerical value associated with
the truth values. Thus, to switch from a given truth value, say k

d−1 , to the next, that is k+1
d−1 , we

need to provide a fixed amount �E of energy. Analogously, when passing from a given truth
value to the previous, the same amount �E of energy is released.

For a gate to be conservative, it must build the output pattern without requiring energy
from an external source nor dissipating energy towards the environment; this means that it can
switch a line from a truth value k1

d−1 to a higher value k2
d−1 if and only if the energy needed

Fredkin gates for finite-valued reversible and conservative logics 9775

(which is equal to (k2 − k1) · �E) becomes available by lowering by the same amount the
truth value stored in some other line. This is clearly equivalent to requiring that the sum of
the values on the output lines be equal to the sum of the values on the input lines.

0- and 1-regularity. We now define two other properties of the Petri–Fredkin gate. They
are not fundamental properties but characterize, for d-valued logics, three-input/three-output
gates that have a behaviour which is similar to the two-valued Petri–Fredkin gate. We recall
that the Petri–Fredkin gate exchanges the second input with the third one when the first input is
set to 0, and it gives as outputs the unchanged inputs when the first input is set to 1. According
to this point of view, let G : L3

d → L3
d be the function computed by a (3, d)-gate; we say that

the gate is 0-regular if and only if G(0, x2, x3) = (0, x3, x2) for every possible choice of x2, x3

in Ld . Analogously, we say that the gate is 1-regular if and only if G(1, x2, x3) = (1, x2, x3)

for every possible choice of x2, x3 in Ld .

Functional completeness. The last fundamental property satisfied by the Petri–Fredkin gate
is universality (in the sense of functional completeness). Indeed, according to the definition
given above, with the d-valued extensions of the Petri–Fredkin gate we will introduce in the
next sections it is possible to realize some universal sets of connectives for d-valued logics.

Conclusions. In the next sections we look for universal gates for d-valued logics which
preserve as many of the following properties as possible:

(F1) it is a (3, d)-gate, that is, a three-input/three-output gate where each input and each
output line may assume one of the values in Ld =

{
0, 1

d−1 , 2
d−1 , . . . , d−2

d−1 , 1
}
;

(F2) it is reversible;
(F2′) it is self-reversible;
(F3) it is weakly conservative;
(F3′) it is strictly conservative;
(F4) it is a universal gate, that is, from the configurations of the gate a universal (functionally

complete) set of connectives is obtained, including FAN-OUT;
(F5) it is 0-regular;
(F6) it is 1-regular;
(F7) y1 = x1, that is, the first output is always equal to the first input (conditional control

condition);
(F8) when fed with Boolean input triples, it behaves as the classical Petri–Fredkin gate.

Properties (F5)–(F8) are not essential from the point of view of conservative logic, but
nonetheless are desirable in a d-valued extension of the Petri–Fredkin gate.

7. Three-valued universal gates

In order to devise a universal gate for a three-valued logic, the first idea that comes to mind is
to take the equations which define the input/output behaviour of the Petri–Fredkin gate and to
interpret ¬,∨ and ∧, respectively, as the Łukasiewicz negation, disjunction and conjunction.
However this approach does not work, as the mapping from L3

3 to L3
3 thus obtained is not even

a bijection. As a consequence, we have to look for gates which are universal and preserve as
many properties from (F1) to (F8) as possible.

The following table presents all the binary three-valued connectives that we are interested
in realizing with our three-valued universal gates: the Łukasiewicz implication →L, the
Gödel implication→G, the Łukasiewicz disjunction ∨, the Łukasiewicz conjunction ∧, the
MV-disjunction⊕ and the MV-conjunction�:

9776 G Cattaneo et al

x y →L →G ∧ ∨ ⊕ �
0 0 1 1 0 0 0 0

0 1
2 1 1 0 1

2
1
2 0

0 1 1 1 0 1 1 0
1
2 0 1

2 0 0 1
2

1
2 0

1
2

1
2 1 1 1

2
1
2 1 0

1
2 1 1 1 1

2 1 1 1
2

1 0 0 0 0 1 1 0

1 1
2

1
2

1
2

1
2 1 1 1

2

1 1 1 1 1 1 1 1

The unitary connectives here considered are, besides the trivial identity connective Id, the
negation connectives ¬,∼, 	 and the modal connectives ♦ and � depicted in the following
table:

x ¬ ∼ 	 ♦ �
0 1 1 1 0 0
1
2

1
2 0 1 1 0

1 0 0 0 1 1

It is important to stress that besides unitary and binary connectives we must consider
the FAN-OUT function which plays a fundamental role for reversible computations. Due to
proposition 6.1, the presence of this function forbids the strict conservativeness of a universal
(3, 3)-gate.

The first three-valued gate that we introduce (F1) allows one to obtain from its
configurations all the main connectives of the Łukasiewicz logic 〈L3,→L〉, as well as the
Gödel implication. The truth table of the gate is given in table 8; as can be seen, the gate is
self-reversible (and thus reversible), 0-regular and 1-regular. Moreover, it satisfies properties
(F7) and (F8).

Table 9 shows all the relevant connectives which can be obtained from the gate by fixing
one or two of its input lines with constant values from L3; Pr1 and Pr2 are the projector

Table 8. Truth table of gate F1.

x1x2x3 �→ y1y2y3 x1x2x3 �→ y1y2y3 x1x2x3 �→ y1y2y3

0 0 0 0 0 0 1
2 0 0 1

2 0 0 1 0 0 1 0 0

0 0 1
2 0 1

2 0 1
2 0 1

2
1
2 0 1

2 1 0 1
2 1 0 1

2

0 0 1 0 1 0 1
2 0 1 1

2 0 1 1 0 1 1 0 1

0 1
2 0 0 0 1

2
1
2

1
2 0 1

2
1
2 0 1 1

2 0 1 1
2 0

0 1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 ** 1

2 1 0 1 1
2

1
2 1 1

2
1
2

0 1
2 1 0 1 1

2
1
2

1
2 1 1

2 1 1
2 1 1

2 1 1 1
2 1

0 1 0 0 0 1 1
2 1 0 ** 1

2
1
2

1
2 1 1 0 1 1 0

1 1 1
2 0 1

2 1 1
2 1 1

2
1
2

1
2 1 1 1 1

2 1 1 1
2

0 1 1 0 1 1 1
2 1 1 1

2 1 1 1 1 1 1 1 1

Fredkin gates for finite-valued reversible and conservative logics 9777

Table 9. The operators obtained through gate F1.

Connective Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 1, x3 = 0 y1, y2 y3

Pr1 x2, x3 x1 = 0 y3 y1, y2

Pr2 x2, x3 x1 = 0 y2 y1, y3

→L x1, x3 x2 = 1 y3 y1, y2

→G x1, x2 x3 = 1 y2 y1, y3

∨ x1, x3 x2 = 1 y2 y1, y3

∧ x1, x2 x3 = 0 y2 y1, y3

Id x1 x2 = 0, x3 = 0 y1 y2, y3

¬ x1 x2 = 1, x3 = 0 y3 y1, y2

∼ x1 x2 = 0, x3 = 1 y2 y1, y3

♦ x1 x2 = 0, x3 = 1 y3 y1, y2

connectives defined as Pr1(x1, x2) = x1 and Pr2(x1, x2) = x2, respectively. We observe
that this gate realizes two negations (the diametrical and the intuitionistic one) and both the
Łukasiewicz and Gödel implications introduced in section 4; as a consequence, the universality
property (F4) is satisfied for both kinds of three-valued logic. On the other hand, the necessity
modal connective, the anti-intuitionistic negation and both the binary MV-connectives are not
realized.

Due to proposition 6.1, gate F1 cannot be strictly conservative, as it realizes the FAN-OUT
function. More precisely, strict conservativeness is lost in the two table rows marked with
(∗∗). However, for these rows the gate is weakly conservative, and therefore the entire gate is
weakly conservative.

The next two gates we introduce are part of the results of an exhaustive search—
performed with a program written on purpose—over all three-valued gates having the following
properties:

(F1) it is a (3, 3)-gate;
(F2′) it is self-reversible;
(F3) it is weakly conservative;
(F8) when fed with Boolean input triples it behaves as the Petri–Fredkin gate.

The first of the two gates we have obtained (F2) is substantially equivalent to F1; its truth
table is given in table 10. As we can see, this gate differs from F1 only for the input triples(
0, 1

2 , 1
2

)
and

(
1
2 , 0, 1

2

)
. It is only 1-regular and it does not satisfy property (F7).

Table 11 shows all the relevant connectives which can be obtained from the gate by
fixing one or two of its input lines with constant values from L3. Let us observe that the
set of connectives is the same as F1’s with the exception of the modal connective �, which
is not present in the first gate. Thus, the deficiencies with respect to gate F1 concerning the
properties enjoyed by the gate are balanced with a richer set of realized connectives. As does
happen with gate F1, the set of connectives realized by gate F2 satisfies condition (F4) of
universality.

The last gate (F3) we introduce allows one to realize the MV-connectives of the three-
valued case; its truth table is given in table 12. Besides properties (F1), (F2′), (F3) and (F8),
used by our program as criteria for the exhaustive search, this gate satisfies property (F7) of
conditional control; moreover, it is 0-regular and 1-regular.

Table 13 shows all the relevant connectives which can be obtained from the gate. Given
the correspondences between the operators of the three-valued Zawirski system 〈L3,⊕,¬〉

9778 G Cattaneo et al

Table 10. Truth table of gate F2.

x1x2x3 �→ y1y2y3 x1x2x3 �→ y1y2y3 x1x2x3 �→ y1y2y3

0 0 0 0 0 0 1
2 0 0 1

2 0 0 1 0 0 1 1 0
0 0 1

2 0 1
2 0 1

2 0 1
2 0 1

2
1
2 1 0 1

2 1 0 1
2

0 0 1 0 1 0 1
2 0 1 1

2 0 1 1 0 1 1 0 1

0 1
2 0 0 0 1

2
1
2

1
2 0 1

2
1
2 0 1 1

2 0 1 1
2 0

0 1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 1 0 1 1

2
1
2 1 1

2
1
2

0 1
2 1 0 1 1

2
1
2

1
2 1 1

2 1 1
2 1 1

2 1 1 1
2 1

0 1 0 0 0 1 1
2 1 0 1

2
1
2

1
2 1 1 0 1 1 0

0 1 1
2 0 1

2 1 1
2 1 1

2
1
2

1
2 1 1 1 1

2 1 1 1
2

0 1 1 0 1 1 1
2 1 1 1

2 1 1 1 1 1 1 1 1

Table 11. The operators obtained through gate F2.

Connective Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 1, x3 = 0 y1, y2 y3

Pr1 x2, x3 x1 = 1 y2 y1, y3

Pr2 x2, x3 x1 = 1 y3 y1, y2

→L x1, x3 x2 = 1 y3 y1, y2

→G x1, x2 x3 = 1 y2 y1, y3

∨ x1, x3 x2 = 1 y2 y1, y3

∧ x1, x2 x3 = 0 y2 y1, y3

Id x1 x2 = 0, x3 = 0 y1 y2, y3

¬ x1 x2 = 1, x3 = 0 y3 y1, y2

∼ x1 x2 = 0, x3 = 1 y2 y1, y3

♦ x1 x2 = 0, x3 = 1 y3 y1, y2

� x1 x2 = 0, x3 = 1
2 y1 y2, y3

Table 12. Truth table of gate F3.

x1x2x3 �→ y1y2y3 x1x2x3 �→ y1y2y3 x1x2x3 �→ y1y2y3

0 0 0 0 0 0 1
2 0 0 1

2 0 0 1 0 0 1 0 0

0 0 1
2 0 1

2 0 1
2 0 1

2
1
2

1
2 0 1 0 1

2 1 0 1
2

0 0 1 0 1 0 1
2 0 1 1

2 0 1 1 0 1 1 0 1

0 1
2 0 0 0 1

2
1
2

1
2 0 1

2 0 1
2 1 1

2 0 1 1
2 0

0 1
2

1
2 0 1

2
1
2

1
2

1
2

1
2

1
2 1 0 1 1

2
1
2 1 1

2
1
2

0 1
2 1 0 1 1

2
1
2

1
2 1 1

2
1
2 1 1 1

2 1 1 1
2 1

0 1 0 0 0 1 1
2 1 0 1

2
1
2

1
2 1 1 0 1 1 0

0 1 1
2 0 1

2 1 1
2 1 1

2
1
2 1 1

2 1 1 1
2 1 1 1

2

0 1 1 0 1 1 1
2 1 1 1

2 1 1 1 1 1 1 1 1

and those of the Łukasiewicz one 〈L3,→L〉 expressed by equation (4), we have that the set of
connectives realized by gate F3 satisfies condition (F4) of universality.

It is worth noting that, as a consequence of proposition 6.1, none of the gates presented
in this section is strictly conservative.

We conclude this section with the following proposition.

Fredkin gates for finite-valued reversible and conservative logics 9779

Table 13. The operators obtained through gate F3.

Connective Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 1, x3 = 0 y1, y2 y3

Pr1 x2, x3 x1 = 0 y3 y1, y2

Pr2 x2, x3 x1 = 0 y2 y1, y3

⊕ x1, x3 x2 = 1 y2 y1, y3

� x1, x2 x3 = 0 y2 y1, y3

Id x1 x2 = 0, x3 = 0 y1 y2, y3

¬ x1 x2 = 1, x3 = 0 y3 y1, y2

∼ x1 x2 = 0, x3 = 1 y2 y1, y3

♦ x1 x2 = 0, x3 = 1 y3 y1, y2

� x3 x1 = 1
2 , x2 = 0 y3 y1, y2

Table 14. Configurations of a (3, d)-gate that realize the ⊕ connective. Here λ is an element of
Ld\{0, 1}.
Connective Inputs Constant Output Garbage Proof

⊕ x1, x3 x2 = 1 y2 y1, y3 (1)
⊕ x1, x2 x3 = 1 y3 y1, y2 (2)
⊕ x2, x3 x1 = λ y1 y2, y3 (3)
⊕ x2, x3 x1 = λ y2 y1, y3 (4)
⊕ x2, x3 x1 = λ y3 y1, y2 (5)
⊕ x1, x3 x2 = λ y1 y2, y3 (6)
⊕ x1, x3 x2 = λ y2 y1, y3 (7)
⊕ x1, x3 x2 = λ y3 y1, y2 (8)
⊕ x1, x2 x3 = λ y1 y2, y3 (9)
⊕ x1, x2 x3 = λ y2 y1, y3 (10)
⊕ x1, x2 x3 = λ y3 y1, y2 (11)

Proposition 7.1. For d � 3, there is no (3, d)-gate satisfying properties (F2), (F3) and (F8)
which is able to realize the Łukasiewicz connectives (∧,∨,→L), the Gödel implication (→G)

and the MV-connectives (⊕,�).

Proof. The only configurations that allow one to realize the classical implication with a
Boolean Fredkin gate are x2 = 1 and x3 = 1. Thus, if we impose property (F8) on our
(3, d)-gate we get the following two possibilities to implement→L and→G:

Connective Inputs Constant Output Garbage

→L x1, x3 x2 = 1 y3 y1, y2

→G x1, x2 x3 = 1 y2 y1, y3

→G x1, x3 x2 = 1 y3 y1, y2

→L x1, x2 x3 = 1 y2 y1, y3

However, in both cases there is no configuration that allows one to realize ⊕. In table 14
we explore all possible configurations and, for each case, we give a short proof of the
incompatibility. In what follows, γ is an unspecified element of Ld , whereas λ is a fixed
element of Ld\{0, 1}.

9780 G Cattaneo et al

(1) For λ � 1
2 , all the triples λ1(1− λ) are mapped to 011, thus violating (F2).

(3) Triples λ11 are mapped to 111, thus violating (F3).
(4) For triples λ01, it should be 0⊕ 1 = 1 on y2, and also λ→L 0 = 1− λ or λ→G 0 = 0

on the same output.
(6) Triples 0λ1 are mapped to 11γ , thus violating (F3).
(7) For triples 1λ1, it should be 1⊕ 1 = 1 on y2, and also 1→L λ = 1− λ or 1→G λ = λ

on the same output.
(9) Triples 01λ are mapped to 1γ 1, thus violating (F3).

(10) For triples 11λ, it should be 1⊕ 1 = 1 on y2, and also 1→L λ = 1− λ or 1→G λ = λ

on the same output.

The cases (2), (5), (8) and (11) can be obtained, respectively, from (1), (4), (7) and (10) by
exchanging the second and third input/output lines of the gate. �

If a strictly conservative gate that realizes all the three-valued connectives mentioned
above is needed then, due to propositions 6.1 and 7.1, it is necessary to look for (n, 3)-gates
with n � 4. In [CLL02], a (4, 3)-gate which has all the required properties is presented.

8. Finite-valued universal gates

After the discovery of the generalizations of the Petri–Fredkin gate to three-valued logics
exposed in the previous section, we obviously tried to generalize further to d-valued logics.

The approach followed in the previous section, that is making an exhaustive search in the
space of truth tables of all (3, d)-gates, is clearly not feasible to find a solution which is valid
for every value of d. As a consequence, we looked for some analytic expressions which define
the new reversible and conservative gates independently of the cardinality of the set of truth
values.

8.1. A gate for Łukasiewicz and Gödel d-valued logics

The first function f 1
d : L3

d → L3
d we introduce is defined as follows:

∀x = (x1, x2, x3) ∈ L3
d

f 1
d(x) :=




(x1, x3, x2) if x1 = 0 and x2 �= x3 (i)
(x1, x3, x2) if 0 < x1 � x3 < 1 and x2 = 1 (ii)
(x1, x3, x2) if 0 < x1 � x2 < 1 and x3 = 1 (iii)
(x1, x1, 1− x1 + x3) if x3 < x1 < 1 and x2 = 1 (iv)
(x1, 1, x3 + x1 − 1) if x1 < 1, x2 = x1, x3 + x1 � 1

and x3 < 1 (v)
(x1, x1, x2 − x1) if 0 < x1 < x2 < 1 and x3 = 0 (vi)
(x1, x3 + x1, 0) if 0 < x1, x2 = x1, x3 + x1 < 1

and x3 > 0 (vii)
(x1, x2, x3) otherwise. (viii)

A direct inspection of the definition allows one to conclude that function f1
d is well defined;

that is, each triple (x1, x2, x3) of L3
d is associated by f 1

d with a single triple (y1, y2, y3) of L3
d .

Let us see some properties of f 1
d .

Proposition 8.1. f 1
d is self-reversible.

Fredkin gates for finite-valued reversible and conservative logics 9781

Proof. We have to prove that ∀x ∈ L3
d, f

1
d

(
f 1

d(x)
) = x. We can proceed by dividing the

elements of the domain as in rules (i), (ii), . . . , (viii).
Let a and b be two arbitrary elements of Ld . Considering the above rules it holds:

(i) f 1
d

(
f 1

d(0, a, b)
) = f 1

d(0, b, a) = (0, a, b).

(ii) Let x = (a, 1, b) with 0 < a � b < 1. Since y = f 1
d(a, 1, b) = (a, b, 1) satisfies the

conditions in (iii), we have f 1
d(a, b, 1) = (a, 1, b) = x.

(iii) Let x = (a, b, 1) with 0 < a � b < 1. It holds y = f 1
d(a, b, 1) = (a, 1, b), that

satisfies the conditions in (ii), and thus f 1
d(a, 1, b) = (a, b, 1) = x.

(iv) Let x = (a, 1, b) with b < a < 1. It holds y = f 1
d(a, 1, b) = (a, a, 1− a + b). Since

0 � b < a < 1, 1 − a + b + a � 1 and 1 − a + b < 1, we have that y satisfies the
conditions in (v), and thus f 1

d(a, a, 1−a +b)= (a, 1, 1−a +b+a−1)= (a, 1, b) = x.

(v) Let x = (a, a, b) with a < 1, b + a � 1 and b < 1. It holds y = f 1
d(a, a, b) =

(a, 1, b + a − 1). Since b + a � 1, b < 1 and 0 � b + a − 1 < a < 1, we have that y

satisfies the conditions in (iv), and thus f 1
d(a, 1, b + a−1) = (a, a, 1− a + b + a − 1) =

(a, a, b) = x.

(vi) Let x = (a, b, 0) with 0 < a < b < 1. It holds y = f 1
d(a, b, 0) = (a, a, b − a).

Since b − a + a < 1 and b − a > 0, we have that y satisfies the conditions in (vii), and
consequently f 1

d(a, a, b − a) = (a, b, 0) = x.

(vii) Let x = (a, a, b) with 0 < a, b+a < 1 and b > 0. Since y = f 1
d(a, a, b) = (a, b+a, 0)

satisfies the conditions in (vi), it holds f 1
d(a, b + a, 0) = (a, a, b) = x.

(viii) Trivial. �

The proof of the previous proposition shows the method used to build the function f 1
d .

Rules (i) and (viii) allow the function to behave as the Petri–Fredkin gate when its arguments
are restricted to {0, 1}. Rules (ii) and (iv) have been introduced in order to allow the gate to
generate the Łukasiewicz implication on the third output line and the Łukasiewicz disjunction
on the second output line when the second input line is set to 1. Rules (iii) and (v) are the
inverses of rules (ii) and (iv); this is done in order to guarantee the self-reversibility of the
gate. Rules (vi) and (viii) realize the Łukasiewicz conjunction on the second output line when
the third input line is set to 0, whereas (vii) and (viii) are their inverses. Rule (viii) uses the
simplest self-reversible function (the identity function) to deal with the cases not considered
by the other rules.

Properties (F5), (F6), (F7) and (F8) are trivially satisfied by f 1
d . Moreover, each rule

was written in order to verify the property of weak conservativeness. In fact, the following
proposition holds, whose proof is straightforward, and thus omitted.

Proposition 8.2. f 1
d is weakly conservative.

It is not difficult to see that f 1
d is also a universal function. In fact, as shown in table 15,

through suitable configurations of constants assigned to its arguments we obtain a set of
connectives which suffice to generate, besides the FAN-OUT function, all the operators of
Łukasiewicz and Gödel d-valued logics.

It is important to emphasize that, as said before, the properties of the gate do not depend
on the number of truth values involved. Moreover, when d = 3 the function f 1

d behaves just
like the gate F1 presented in the previous section.

9782 G Cattaneo et al

Table 15. The operators obtained through function f 1
d .

Connective Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 1, x3 = 0 y1, y2 y3

Pr1 x2, x3 x1 = 0 y3 y1, y2

Pr2 x2, x3 x1 = 0 y2 y1, y3

→L x1, x3 x2 = 1 y3 y1, y2

→G x1, x2 x3 = 1 y2 y1, y3

∨ x1, x3 x2 = 1 y2 y1, y3

∧ x1, x2 x3 = 0 y2 y1, y3

Id x1 x2 = 0, x3 = 0 y1 y2, y3

¬ x1 x2 = 1, x3 = 0 y3 y1, y2

∼ x1 x2 = 0, x3 = 1 y2 y1, y3

♦ x1 x2 = 0, x3 = 1 y3 y1, y2

8.2. A family of functions which realize necessity

Since f 1
d does not allow one to realize the modal operator �, we propose the following

family of functions. Let λ be any value from the set Ld\{0, 1}; the family of functions
f 2

d,λ
: L3

d → L3
d , parametrized with respect to λ, is defined as follows:

∀x = (x1, x2, x3) ∈ L3
d

f 2
d,λ

(x) :=




(x2, x1, x3) if x1 = 0, 0 < x2 < 1 and x3 = λ (i)
(x2, x1, x3) if 0 < x1 < 1, x2 = 0 and x3 = λ (ii)
(x1, x3, x2) if x1 = 0, x2 �= λ, x3 �= λ and x2 �= x3 (iii)
(x1, x3, x2) if 0 � x1 � x3 < 1 and x2 = 1 (iv)
(x1, x3, x2) if 0 � x1 � x2 < 1 and x3 = 1 (v)
(x1, x1, 1 − x1 + x3) if x3 < x1 < 1 and x2 = 1 (vi)
(x1, 1, x3 + x1 − 1) if x1 < 1, x2 = x1, x3 + x1 � 1

and x3 < 1 (vii)
(x1, x1, x2 − x1) if 0 � x1 < x2 < 1 and x3 = 0 (viii)
(x1, x3 + x1, 0) if 0 � x1, x2 = x1, x3 + x1 < 1

and x3 > 0 (ix)
(x1, x2, x3) otherwise. (x)

For each fixed value of λ we get a function which realizes the connectives exposed in
table 16. As can be seen, the price we pay to realize the modal connective � together with all
the connectives of f 1

d is that the functions f 2
d,λ

lose 0-regularity in 2d − 5 input/output pairs
and property (F7) in 2d − 4 input/output pairs. Properties (F6) and (F8) are trivially satisfied
by functions f 2

d,λ
.

The following proposition holds. The proof of self-reversibility is similar to the one
of proposition 8.1, and thus omitted; as for weak conservativeness, it suffices to inspect the
definition of f 2

d,λ
.

Proposition 8.3. For each fixed value of λ in Ld\{0, 1}, the function f 2
d,λ

is self-reversible
and weakly conservative.

We observe that, for a fixed λ, the constants involved in the configurations depicted in
table 16 are independent of d. Notice also that, when d = 3, the function f 2

d, 1
2

behaves just

like the gate F2 presented in the previous section.

Fredkin gates for finite-valued reversible and conservative logics 9783

Table 16. The operators obtained through functions f 2
d,λ

.

Connective Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 1, x3 = 0 y1, y2 y3

Pr1 x2, x3 x1 = 1 y2 y1, y3

Pr2 x2, x3 x1 = 1 y3 y1, y2

→L x1, x3 x2 = 1 y3 y1, y2

→G x1, x2 x3 = 1 y2 y1, y3

∨ x1, x3 x2 = 1 y2 y1, y3

∧ x1, x2 x3 = 0 y2 y1, y3

Id x1 x2 = 0, x3 = 0 y1 y2, y3

¬ x1 x2 = 1, x3 = 0 y3 y1, y2

∼ x1 x2 = 0, x3 = 1 y2 y1, y3

♦ x1 x2 = 0, x3 = 1 y3 y1, y2

� x1 x2 = 0, x3 = λ y1 y2, y3

8.3. A gate for MV-connectives

None of the gates just presented generates the MV-connectives shown in section 4. This fact
led us to define the following function m d : L3

d → L3
d :

∀x = (x1, x2, x3) ∈ L3
d

m d(x) :=




(x1, x3, x2) if x1 = 0 and x2 �= x3 (i)
(x1, x1 + x3, 1− x1) if x1 > 0, x2 = 1 and x1 + x3 < 1 (ii)
(x1, 1, x2 − x1) if 0 < x1 � x2 < 1 and x3 = 1− x1 (iii)
(x1, x1 + x2 − 1,

1− x1) if x1 < 1, x2 < 1, x3 = 0 and
x1 + x2 > 1 (iv)

(x1, x2 + x3, 0) if 0 < x2 < x1 < 1 and x3 = 1− x1 (v)
(x1, x3, x2) if 0 < x1, x2 > 0, x3 = 0 and

x1 + x2 � 1 (vi)
(x1, x3, x2) if 0 < x1, x2 = 0, x3 > 0 and

x1 + x3 � 1 (vii)
(x1, x2, x3) otherwise. (viii)

In order to find this gate we used the technique previously shown: first we looked at the
gate F3 exposed in the previous section in order to know which configurations give rise to the
operators⊕ and�; successively, we wrote their inverses. Thus it is no wonder that, for d = 3,
the function m d behaves like the gate F3 presented in the previous section.

As we have done with the previous functions, we can state the following proposition.

Proposition 8.4. m d is self-reversible and weakly conservative.

Moreover, properties (F5), (F6), (F7) and (F8) are trivially satisfied by m d .
Table 17 reports the operators that can be obtained from function m d by fixing one or two

input lines with constant values from Ld . As we can see, m d is a gate providing functional
completeness for the finite-valued calculus of Łukasiewicz, regardless of the value assumed
by d.

9784 G Cattaneo et al

Table 17. The operators obtained through function m d .

Connectives Inputs Constants Outputs Garbage

FAN-OUT x1 x2 = 1, x3 = 0 y1, y2 y3

Pr1 x2, x3 x1 = 0 y3 y1, y2

Pr2 x2, x3 x1 = 0 y2 y1, y3

⊕ x1, x3 x2 = 1 y2 y1, y3

� x1, x2 x3 = 0 y2 y1, y3

Id x1 x2 = 0, x3 = 0 y1 y2, y3

¬ x1 x2 = 1, x3 = 0 y3 y1, y2

∼ x1 x2 = 0, x3 = 1 y2 y1, y3

♦ x1 x2 = 0, x3 = 1 y3 y1, y2

� x3 x1 = 1
d−1 , x2 = 0 y3 y1, y2

9. Conclusions and directions for future work

We presented some generalizations of the Petri–Fredkin gate for d-valued reversible and
conservative logics, notably d-valued Łukasiewicz and d-valued Gödel logics. In particular,
we introduced three gates for three-valued logics and three possible extensions of such gates for
d-valued logics; one of the extensions was specifically designed to realize the MV-connectives.
Moreover we showed how to realize, with such gates, the operators that characterize some
modal logics.

One of the purposes of our work was to show that the framework of reversible
and conservative computation can be extended towards some non-classical ‘reasoning
environments’, originally proposed to deal with propositions which embed imprecise and
uncertain information, that are usually based upon many-valued and modal logics.

It remains an open question as to how it is possible to extend further the framework
towards infinite-valued logics, such as fuzzy logics, both with ℵ0 and ℵ1 truth values. We
feel that in such settings many new and interesting questions arise; here we propose just a few
of them. For example: since reversible circuits no longer need to have the same number of
input and output lines, and moreover we can encode on a single input (or output) as much
information as we want, what are the computational properties of such circuits? What are the
differences with respect to reversible and conservative circuits for d-valued logics? How can
we characterize the set of functions computed by such circuits?

Moreover, it is not difficult to extend proposition 6.1 to deal with an infinite number of
truth values. A direct consequence is that there are no possible extensions of the Petri–Fredkin
gate to infinite-valued logics which compute the FAN-OUT function and at the same time are
strictly conservative. How does this change the notion of conservativeness? In this paper we
proposed the alternative notion of weak conservativeness, together with a possible physical
interpretation; however, when dealing with an infinite number of energy levels there are two
possibilities: either the energy levels extend over an unlimited range, or the levels become
increasingly close to each other. In the former case there is the problem of assigning the truth
value 1 to some energy level. In the latter case, an infinite precision on the amount of energy
can be required to switch from one level to another; in this situation, when the energy gap
between the levels becomes smaller than the underlying thermal noise the computing physical
system goes out of control. The above observations naturally lead to the following question:
are the circuits for infinite-valued logics physically realizable? On the other hand, do we really
need them?

Fredkin gates for finite-valued reversible and conservative logics 9785

Acknowledgment

This work has been supported by MIUR\COFIN project ‘Formal Languages and Automata:
Theory and Application’.

References

[Be73] Bennett C H 1973 Logical reversibility of computation IBM J. Res. Dev. 17 525–32
[Be88] Bennett C H 1988 Notes on the history of reversible computation IBM J. Res. Dev. 32 16–23
[Be98] Bennett C H 1998 Quantum information Technical Report, Tutorial, MFCS ’98

[CLL02] Cattaneo G, Leporati A and Leporini R Quantum conservative gates for finite-valued logics Int. J. Theor.
Phys. at press

[CN89] Cattaneo G and Nisticò G 1989 Brouwer–Zadeh posets and three-valued Łukasiewicz posets Fuzzy Sets
and Systems 33 165–90

[Ch58] Chang C C 1958 Algebraic analysis of many valued logics Trans. Am. Math. Soc. 88 467–90
[Ch59] Chang C C 1959 A new proof of the completeness of Łukasiewicz axioms Trans. Am. Math. Soc. 93 74–80
[Ch88] Chellas B F 1988 Modal Logic, An Introduction (Cambridge, MA: Cambridge University Press)
[Fe85] Feynman R P 1985 Quantum mechanical computers Opt. News 11 11–20
[FT82] Fredkin E and Toffoli T 1982 Conservative logic Int. J. Theor. Phys. 21 219–53
[Ki76] Kinoshita K et al 1976 On magnetic bubble circuits IEEE Trans. Comput. C 25 247–53
[La61] Landauer R 1961 Irreversibility and heat generation in the computing process IBM J. Res. Dev. 3 183–91
[LR90] Leff H S and Rex A F (ed) 1990 Maxwell’s Demon: Entropy, Information, Computing (Princeton, NJ:

Princeton University Press)
[Lu20] Łukasiewicz J 1920 O logice Ruch Filozoficzny 5 170–1 (Engl. transl. 1970 On three-valued logic Selected

Works ed L Borkowski (Amsterdam: North-Holland) p 87)
[Lu30] Łukasiewicz J 1930 Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküs Comptes

Rendus des Séances de la Société des Sciences et des Lettres de Varsovie 23 51–77 (Engl. transl. 1970
Philosophical remarks on many-valued systems of propositional logic Selected Works ed L Borkowski
(Amsterdam: North-Holland) p 153)

[Lu70] Łukasiewicz J 1970 Selected Works ed L Borkowski (Amsterdam: North-Holland)
[Mc51] McNaughton R 1951 A theorem about infinite-valued sentential logic J. Symb. Logic 16 1–13
[Pe67] Petri C A 1967 Gründsatzliches zur Beschreibung diskreter Prozesse Proc. 3rd Coll. über Automatentheorie

(Hannover, 1965) (Basel: Birkhäuser) pp 121–40 (Engl. transl. 1982 Fundamentals of the representation
of discrete processes ISF Report 82.04; transl. by H J Genrich and P S Thiagarajan)

[Re69] Rescher N 1969 Many-Valued Logics (New York: McGraw-Hill)
[RT52] Rosser J B and Turquette A R 1952 Many-Valued Logics (Amsterdam: North-Holland)
[Tof80] Toffoli T 1980 Reversible computing Automata, Languages and Programming ed J W de Bakker and

J van Leeuwen (Berlin: Springer) p 632 Also available as Technical Memo MIT/LCS/TM-151 MIT
Laboratory for Computer Science, February 1980

[vN56] von Neumann J 1956 Probabilistic logics and the synthesis of reliable organisms from unreliable
components Automata Studies ed C E Shannon and J McCarthy (Princeton, NJ: Princeton University
Press) pp 43–98

[Za34] Zawirski Z 1934 Relation of many-valued logic to probability calculus (in Polish, original title: Stosunek
logiki wielowartościowej do rachunku prawdopodobieństwa) Poznańskie Towarzystwo Przyjaciól
Nauk.

